3x^2+4x^2=15^2

Simple and best practice solution for 3x^2+4x^2=15^2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3x^2+4x^2=15^2 equation:



3x^2+4x^2=15^2
We move all terms to the left:
3x^2+4x^2-(15^2)=0
We add all the numbers together, and all the variables
7x^2-225=0
a = 7; b = 0; c = -225;
Δ = b2-4ac
Δ = 02-4·7·(-225)
Δ = 6300
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{6300}=\sqrt{900*7}=\sqrt{900}*\sqrt{7}=30\sqrt{7}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-30\sqrt{7}}{2*7}=\frac{0-30\sqrt{7}}{14} =-\frac{30\sqrt{7}}{14} =-\frac{15\sqrt{7}}{7} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+30\sqrt{7}}{2*7}=\frac{0+30\sqrt{7}}{14} =\frac{30\sqrt{7}}{14} =\frac{15\sqrt{7}}{7} $

See similar equations:

| 4*5x=54 | | -17=-12+n | | -19m=171 | | 8+7x-3=3x-7 | | 6x-7+5x+1=0 | | 4*x*5=54 | | -15z-12=2z+15 | | 4^-2n=16 | | 5x+8x-3=15x+17 | | -5+11g=19-13g | | 9y+21=9y+21 | | 5b-2=2b+45 | | 2x^2=16-3x | | 17/20=n/100 | | 5(m-3)=7m-9 | | x÷2=3 | | 3x23x+1=0 | | X^+x-90=0 | | 5(8-2y)=60 | | 3x(7-x)=44;-11 | | 7x-3x=44;11 | | 3k^2=k=4 | | -8+b=-3 | | 15-5x=4x+3 | | 2x+6-4x=-12 | | 2x-4+8=6x+4-3x | | -3(-2x+7)+4x=19 | | 3^x-1=7 | | x^2+4x-143=0 | | 2/3x=1/9+x | | 1/7x+7=1+2x | | 2x+6-4x=-2 |

Equations solver categories